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Bistatic Frequency-Swept Microwave Imaging:

Principle, Methodology and Experimental Results
Ding-Bing Lin, Student Member, IEEE, and Tah-Hsiung Chu, Member, IEEE

Abstract-The basic principle, methodology and experimental

results of frequency-swept microwave imaging of continuous

shape conducting and discrete line objects in a bistatic scattering

arrangement are presented. Theoretical analysis is developed
under the assumptions of plane wave illumination and physical
optics approximation. The measurement system and calibration

procedures are implemented based on the plane wave spectrum
analysis. Images of three different types of scattering objects

reconstructed from the experimental data measured in the fre-

quency range 7.5-12.5 GHz are shown in good agreement with

the scattering object geometries. The results demonstrate that the

developed bistatic frequency-swept microwave imaging system

has potential as a cost-effective tool for the application of remote

sensing, imaging radar, and nondestructive evaluation.

I. INTRODUCTION

I T HAS BEEN of long standing interest in inverse scattering

problems to develop analytical method and measurement

system that enable one to use the information in the measured

electromagnetic field to infer the geometrical shape, or the

material characteristics of the unknown scattering object [1].

Microwave imaging is cataloged as an inverse scattering

problem, and finds its application in imaging radar, remote

sensing, nondestructive evaluation, and biological diagnosis

etc., because microwaves can penetrate fog, cloud, and a

variety of dielectric materials.

It is known that the Bojarski’s identity forms the basis of

microwave imaging of a perfectly conducting object in the

far-field backward monostatic scattering arrangement [2], [3].

A microwave imaging system with high image resolution can

be achieved by extending the effective area of the physical

recording aperture using frequency, angular and polarization

diversity techniques. With the use of Bojarski’s identity and

frequency-swept technique, high-resolution microwave image

of conducting objects has been experimentally demonstrated

in [4] and [5]. However, in the monostatic scattering arrange-

ment the scattering object is rotated (i.e., angular diversity

technique) in order to acquire the object scattering information

at different viewing and illumination angles.

This paper studies the frequency-swept microwave imaging

in a bistatic scattering arrangement in which, by using the

plane wave expansion of the scattered field over a linear array,
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the far-field criterion does not meet as that in the Bojarski’s

identity. With the use of linear receiving array and frequency

diversity technique, the images are shown to be reconstructed

from the acquired object scattered field in a cost-effective sense

without the use of planar array or time-consuming angular

diversity technique.

The aim of this paper is to develop and experimentally

demonstrate a cost-effective data acquisition and processing

scheme for use in a bistatic frequency-swept microwave imag-

ing system. This paper begins with the theoretical aspects of

frequency-swept microwave imaging of perfectly conducting

object in the bistatic backward scattering arrangement which

was found to be a cost-effective approach compared with the

multiview, single-frequency forward scattering arrangement

[6]. Analtyical results to be developed in Section II show

that the image can be reconstructed via Fourier inversion

of the acquired Fourier space data under the assumptions of

plane wave illumination atid physical optics approximation.

Note only a two-dimensional bistatic scattering measurement

system is studied in this paper due to the simplicity and

practical consideration of using linear array instead of the

three-dimensional analysis described in [6].

According to the formulation-of image reconstruction to

be given in Section II, the scattering object is normally

(zero incidence angle) illuminated by a plane wave, and its

scattered field is recorded by a linear receiving array. In

our measurement system, a rectangular horn antenna and an

open-ended rectangular waveguide probe mounted on a linear

scanner are used for transmitting and receiving wide-band

signals. The error caused from the imperfect plane wave

illumination is neglected, and the receiving probe response

will be calibrated for the determination of the Fourier space

data of scattering object. However, the mutual coupling effect

in a linear array is not considered in this arrangement.

The methodology on which the calibration procedure to be

developed in Section III is based on the representation of

both the scattered field (or input signal to the receiving probe)

and the measured signal from the probe as a superposition of

plane waves each traveling in different direction with different

amplitudes [7], [8]. A calibration equation is lhen derived

to relate the measured Fourier space data to the calibrated

Fourier space data. In Section IV the images reconstructed

from the experimental data using the developed calibration

procedures show that the developed frequency-swept bistatic

microwave imaging system is capable of cost-effectively yield-

ing images in good agreement with the scattering object

geometries.
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Fig. 1. Two-dimnensional bistatic scattering geometry.

II. PRINCIPLE

In this section, we will relate the bistatic scattering prop-

erties to the microwave image reconstruction algorithm for

two-dimensional continuous shape conducting and discrete

line objects in the bistatic scattering arrangement as shown

in Fig. 1. In the following derivation the scattering object

is assumed to be infinitely long in the y-direction (normal

to the x-z plane), and is illuminated by a normally incident

TM-polarized plane wave

Ei(r) =jEoe–~k02’T, (1)

IF(?-) =:2 x E’(T-) (2)

where k. = w/c is the wave number, E. is the complex field

amplitude, q = - is the intrinsic impedance in free

space, and exp (jwt) time dependence is implied.

The scattered field over a linear array in the x-direction

located at z = –d (shown in Fig. 1) for the case of a perfectly

conducting object satisfying the physical optics approximation

is given as

E:(x, z = –d, ko)

X Hi(r’)G(lT – T’1) dr’ (3)

where Cilz is the illuminated object contour, ii (r’) is the

outward unit normal vector of C’,lz at r’, and

1 (2)
G(lr – T’1) = @I. (kolr – T’1) (4)

is the Green’s function in free space.

Similarly, for the case of discrete line scatterers with the
current density induced on the it h line scatterer at r: expressed

as

J(T)= & ( Ja ?-’ F(7-)5(?- – 9-’), (5)

i.e., the line scatterers scatter isotropically with no mutual

coupling and having reflectivity a(r~ ), the scattered field over

a linear array in the z-direction located at z = – d is given as

l?:(z, z = –d, ko) = ~ o(r:)l?’(r-:)G(lr- – T:I). (6)

On assuming the polarization state of receiving array in the

Y -direction, the scattered field recorded by the linear array at

z = — d becomes

US(T,.Z = –d, ko) = ij. Es(z, z = –d, ko). (7)

Therefore (3) can be expressed as

~:($,.z = –d, ko)

= ij.ll~(x,z = –d, ko)

= –jkoEo
//

oc(T/)e–jko# . G(lr – T’1) d2r’ (8)

where

0.(?-’) = –2fi(T-’) . M(C(7-’)) (9)

is defined as the scattering function of the perfectly conducting

object which is related to the object shape, and 6( C(T-’) ) is a

one-dimensional Dirac delta function with its argument defined

as

C(l-’)
{

=0 as 7-’ e C~~~

#O elsewhere
(lo)

which reduces the surface integral in (8) to the line integral

in (3).

Similarly by defining the scattering function of the discrete

line objects which is related to the distribution of each line

scatterer as

Od(?-) = ~ 0(7-;)8(7’ – T\) (11)

where 6(T – r; ) is a two-dimensional Dirac delta function, the

summation in (6) becomes the surface integral given as

U:($, z = –d, ko)

= y.~j(z,z = –d, ko)

= E.
//

od(r’)e–~ko;’r’ . G(tr – J/l’ d2r-’( 2)

Note that (12) is similar to (8) except for the scaling factor

outside the integral and the definition of scattering function.

Therefore, for the simplicity and unification of the following

formulation, (12) and (8) can be rewritten as

~s(z, z = –d, ko) =K

/J

O(T’)e–~kO;’T’G(lT – ~’1) dzr’.

(13)

For the continuous scattering object, ~ and O(r’) are –jkoEo

and the microwave image defined by the scattering function

given in (9) respectively. For the discrete scattering object, ~

and O (r’) are E. and the microwave image defined by the

scattering function given in (11)
By using the plane wave expansion of the Green’s function

[10]

G(IP+;
/

~@[71-d-2’1+k.(z -z’)] d/z (14)
27

where r = X2 – d2, # = x’? + ,z’,2, and
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Fig. 2. Fourier slice acquired in the backward scattering arrangement with Fig. 3. Fourier space data acquired in the backward scattering arrangement
single-frequncy (wavenumber lco ) plane wave illumination. using frequency diversity technique with k-o stepped from /cl to kZ.

and one-dimensional Fourier transforming the resulting ex-

pression of Us (z, .z = –d, ko) in the z-direction, one can

obtain

–j~e–j7do(kz, –-y – o
U’(k.,z = –d, ki)) = —

2’y ~ ).

(16)

In deriving (16), the one-dimensional Fourier transformation
of us (z, ~ = –d, /Co) in the z-direction is defined as

@(kz,z = –d, ko) =

/

US(T, z = –d, ko)eik’z h,

(17)

whereas the two-dimensional Fourier transformation of the

scattering function O(T) is defined as

O(k) =
//

“k.r ~2r
o(T)e~ (18)

where k = kzii + k,; is the wave vector in Fourier space.

After applying (15), the arguments of ~(k) in (16) are

related by

kg + (k. + ko)z = k~. (19)

Equations (16) and (19) show that as a two-dimensional

scattering object is illuminated by a normally incident plane

wave, one-dimensional Fourier transforming the scattered field

recorded in the bistatic backward scattering arrangement yields

a semicircular slice centered at LO,– k. ) with radius k. in the

two-dimensional Fourier space O(k) of the scattering function

as the semicircle denoted by the solid line shown in Fig. 2.

The dashed line given in Fig. 2 corresponds to the bistatic

forward scattering arrangement, however, it was shown that

this arrangement is not practical using the frequency-swept

technique due to its limited Fourier space [6].

In order to reconstruct the scattering object image with

high resolution, a large portion of Fourier space data can

be acquired by linearly stepping the frequency of incident

plane wave form jl to ~q. Both the radius and the center
of semicircular slice shown by (19) will vary from ICI and

(O, –kl) to b and (O, –kz) accordingly. The semicircle
denoted by the solid line in Fig. 2 then extends to a fan-

shaped section in the Fourier space as shown in Fig. 3. This

is known as the frequency diversity technique. Therefore, the

two-dimensional Fourier inversion of band-pass version of the

limited Fourier space data yields the similar image of either

the shape of illuminated portion of continuous scattering object

or the distribution of discrete scattering objects. The above

theoretical results can be extended to the three-dimensional

case with incident plane wave illuminating in an arbitrary

direction. In the following section, experimental measurement

system and calibration procedure to acquire the Fourier space

data will be described.

III. MEASUREMENT SYSTEM AND CALIBRATION PROCEDURE

Shown in Fig. 4 is the developed experimental system to

measure the wide-band bistatic scattering data of test object

in a backward scattering arrangement. In the measurement

system, an Arra X820 rectangular horn antenna is used for

transmitting wide-band signals, and an open-ended WR-90

rectangular waveguide mounted on a linear scanner is used as’

the receiving probe. The linear scanner consists of a stepping

motor for moving the receiving probe along the dashed line

shown in Fig. 4 to synthesize a linear receiving array. The

stepping motor driver is controlled by HP3 852A data control

unit. The measurement system also includes Hughes 801OH

traveling wave tube amplifier (TWTA), Avantek AWT- 18235

low noise amplifier (LNA), and HP8510B network analyzer.

The measurement system is automated with MicroVax 3500

via an IEEE-488 interface bus to perform instrument control,

data acquisition, and signal processing.
The calibration procedures to be described in the following

for the developed measurement system is based on the plane

wave expansion, in which a monochromatic scalar wave can

be represented as [8]

J
U(7-, l-co) = + ii(kz, kO)e-~k”T ~fb, (20)
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Fig. 4. Automated wide-band bistatic scattering measurement system.

i.e., a superposition of plane waves each traveling indifferent

direction of k = kzi + kZ2 with amplitude A(kZ, ko) defined

as the plane wave spectrum (PWS) of U (r, k.). In (20) the

wave vector k satisfies the dispersive relationship

k: +k: = k:. (21)

In the measurement system, the receiving probe is oriented

in the z-direction as the transmitting horn antenna which gives

a normally incident TM-polarized plane wave. By ignoring the

effects due to the imperfect plane wave illumination from horn

antenna and the multiple reflection between the antennas and

test object, according to (16), (17), and (20) the scattered field

at the receiving probe position can be expressed as

Ly(x,z = –d, ko) = ;
f

Az(kz,k~)e–~[k”z+(–?) (–d)l ~~z

(22)

where

.&(kz, kl)) = fi(kz, ko) + ~O(kZ, –T – ko) (23)
2’y

is called the PWS of the wave represented by (22), and

~; (k., kO) is the PWS of an additive isolation error to account

for the residual reflection of the empty room.
Note the wave represented by (22) is not a quantity directly

measurable. By considering the error associated with both

the receiving probe response and the measurement system

frequency response as a filter designated as fi(ka, ko) in

the plane wave spectrum domain, the measured wide-band

scattered field over the linear array can then be expressed as

U:(2,.Z= –d, ko)= :
J

/io(kz, ko)e–~[k”z+(–~)(–d)l ~~z

(24)

where

Ao(kz, ko) = Io(kz, /co) + At(kr, ko)R(km, /%0)

–~~o(~z, –~ – o=f(k.,ko) + ~ k )R(kx, ko)

(25)

is the PWS of the wave represented by (24), ~0 (k., ko) is the

PWS of the isolation error resulting from the coupling between

transmitting and receiving antennas, and

I(kz, I@) =fo(kz, ko) + Ii(kz, ko)R(kz, I@). (26)

By one-dimensional Fourier transforming the measured scat-

tered field represented by (24) in x-direction, one can obtain

U&(kX, z = –d, ko) =~(k., ko)e-~yd + ~e-~~d
27

. @kZ, –y – kO)~(kz, ko) (27)

which establishes a relationship between the calibrated Fourier

space data and the measured Fourier space data. In (27) the first

part is an isolation error term, and it can be directly acquired

by one-dimensional Fourier transforming the signal measured

without locating any scattering object inside the anechoic

chamber. The second part is the product of three terms, the

first term is referred as the range-phase term, the second

term is the desired calibrated values of the two-dimensional

Fourier transformation of the scattering function distributed

on a semicircular slice in the Fourier space, and the third term

is associated with the receiving probe and system frequency

responses.

For a reference scattering object (27) becomes

ti~,f (kZ, 2 = –d, ko) = f(kz, ko)e-~vd + ‘e-37d
27

“ Or.f(kz, –’y – ko)qkz, ko)

(28)

where U;e ~(kc, z = –d, ko) and O,,f(k., –~ – ko) are the

measured and calculated Fourier space data of the reference

object used to eliminate the error terms given in (27). There-

fore, from (27) and (28) the calibrated Fourier space data can

be acquired as

U&(kz,z = –03, ko)– f(kz, ko)e-37d
O(k., –~ – ko) = .

U~ef(k.,.2 = –d, ko)– f(kz, ko)e-~~d

- dref(kz, –-f – ko). (29)

Summarized as follows are the calibration procedures based

on the calibration equation (29):

1.

2.

3.

Measure the wide-band isolation error using linear scan-

ner in the empty room.

Positioning the reference object then the test object,

measure the wide-band bistatic scattered fields then

perform one-dimensional Fourier transformation after

subtracting the wide-band isolation error measured in

step (l).

Calibrate the Fourier space data of the test object using

(29).
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4. Use linear interpolation to acquire the Fourier space,data

in rectangular format for two-dimensional inverse fast

Fourier transformation.

Note in step (3) one-dimensional Fourier transformation

of the isolation error is not required, and it can be directly

subtracted from the measured scattered field data in step (2).

IV. EXPERIMENTAL RESULTS

Based on the above measurement system and calibration

procedures, given in this section are the experimental results of

three different types of scattering objecc (a) a metallic cylinder

with length 91 cm and radius a = 15 cm used as a continuous

scattering object, (b) four distributed metallic thin cylinders

with length 113 cm and radius a = 0.5 cm used as discrete line

scatterers, and (c) a 1 : 100 scale metal covered B-52 model

aircraft used as a complex scattering object, for demonstrating

the performance of the developed frequency-swept bistatic

microwave imaging system.

Before presenting the experimental results the sampling

criteria and resolution of the developed imaging system are

discussed in the following.

To avoid the aliasing effect, the stepping interval of linear

scanner should satisfy

h+’ (30)

where ~~in is the minimum wavelength (the maximum fre-

quency). Similarly the frequency stepping interval requires

(31)

where Ar~aX is the maximum size of scattering object. The

image resolution is inversely proportional to the effective area

of Foufier space data. From Fig. 2, the fan-shaped section

in the Fourier space, the range resolution becomes inversely

proportional to the available bandwidth.
In the measurement, a 153.6-cm-long linear scanning posi-

tioner located at about z = –95 cm with reference to the

center of test object positioner. The linear receiving array

is synthesized by moving an open-ended WR-90 rectangular

waveguide at 128 equally spaced positions. The frequency is

stepped from 7.5 to 12.5 GHz for 51 frequency points. The

reference object used for calibration is a metallic cylinder with

length 113 cm and radius a = 0.5 cm.

In the type (a) test object, the range of ka is 23.6–39.3

radians, hence the measurement is in physical optics regime.

Shown in Fig. 5(a) is the Fourier space data acquired from

the frequency-swept bistatic microwave imaging system, and

is in good agreement with the simulation result shown in Fig.

5(b). The reconstructed images from experimental data and

simulation data are shown in Fig. 6(a) and (b). It is shown that

the reconstructed image gives a partial circular ring image cor-

responding to the induced surface current distribution on the

object illuminated region due to specular diffraction observed

by the linear array. Therefore by extending the effective size

of the linear array will not improve the image quality.

(b)

Fig. 5. (a) Measured and (b) simulated Fourier space data of a metallic
cylinder with radius a = 15 cm.

The experimental results shown in Fig. 5 and 6 are in good

agreement with the simulation results, in which an infinite long

cylinder is illuminated by a plane wave, and the receiving

antenna is treated as an ideal probe. This indicates that the

data acquisition and calibration procedures described in the

Section III remove the effects including the isolation error,

the range-phase term, the nonideal receiving probe response,

and the system frequency response.

In the type (b) test object, the range of ku is 0.79–1.31

radians, hence the thin cylinders can be treated as four line

scatterers. Results of the Fourier space data and reconstructed

image are shown in Fig. 7(a) and (b). The reconstructed image

is in good agreement with the distribution of four thin cylinders

given in Fig. 7(c).

For the complex object of a B-52 scale aircraft, it consists

of discrete and continuous scattering centers contributed to

the measured bistatic frequency-swept responses. Results of

the Fourier space data and reconstructed image are shown in

Fig. 8(a) and (b). The reconstructed image clearly indicates

those scattering centers on the illuminated surface of test

aircraft observed by the linear array. The image shown is

not symmetrical with respect to the fuselage, because the

assumption of infinite length in the y-direction is inade-

quate.
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(a) (a)

(b)

Fig. 6. Reconstructed images of metallic cylinder with radius a = 15 cm

obtained from (a) measured and (b) simulated Fourier space data given in
Fig. 5.

V. CONCLUSION

In this study, the frequency-swept microwave imaging of

perfectly conducting objects in the bistatic scattering arrange-

ment has been experimentally demonstrated to be able to

retrieve the shape of continuous scattering object and the

distribution of discrete scattering objects. By using the plane

wave spectrum expansion of the scattered field measured from

the receiving probe, the far-field criterion is then unnecessary.

Experimental results of three different types of scattering ob-

ject illustrate the principle and methodology of the developed

bistatic frequency-swept microwave imaging system.

In the analysis, the bistatic frequency-swept microwave

imaging principle is developed under the physical optics

approximation and two-dimensional scattering arrangement. It

is known that the physical optics is inadequate as the dominant

scattering mechanism involves the edge diffraction, multiple

reflection, creeping waves, or traveling waves for a conducting

object of complex shape [11]. Furthermore, study on the

polarization effect in bistatic microwave imaging system is

also important. However the reconstructed image of a three-

dimensional B-52 scale model aircraft using the developed

frequency-swept bistatic microwave imaging system yields the

feature of the scattering comtiex obiect and delineates the

(b)

x

-Z
-lo -5 5 10

-5- . e

-10

t
(c)

Fig. 7. (a) Fourier space data and (b) reconstructed image of four thin
cylinders with (c) geometries at (– 12,0) cm, (O, 8) cm, (3.5, –6) cm, and
(10, 5) cm respectively.

correct geometrical relation and relative size. The results show

that the described bistatic frequency-swept microwave imaging

system can be a cost-effective approach in the use of imaging
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(a)

(b)

Fig. 8. (a) Fourier space data and (b) reconstructed image of a 1 :100 scale
B-52 model aircraft.

radar, remote sensing and nondestructive evaluation.

ACKNOWLEDGMENT

The authors wish to thank Dr. T.-J. Chen for his helpful

discussion, and Mr. C.-Y. Chi for implementing the linezu

scanner.

REFERENCES

[1] H. P. Baltes, Ed., Inverse Scattering Problem in Optics, New York:
Springer-Verlag, 1980.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

R. M. Lewis. “Physical oDtics inverse diffraction,” IEEE Trans. Anterma
Propagat., vol. A-P-24, pp. 308–3 14, May 1969.
N. N. Bojarski, “A survey of physical optics inverse scattering identity;
IEEE Trans. Antennas Propagat., vol. AF-30, pp. 98(k989, Sept. 1982.
N. H. Farhat, C. L. Werner, and T. H. Chu, “Prospects for :1-D projective

and tomographic imaging radar network,” Radio Sci., vol. 19, no. 15,

pp. 1347-1355, Sept./Ott. 1984.
N. H. Farhat, “Microwave diversity imaging and automated target

identification based on models of neural networks,” Proc. IEEE, vol.

77, pp. 67(L680, May 1989.
T. H. Chu and D. B. Lln, “Microwave diversity imaging of perfectly
conducting objects in the near-field region,” IEEE Trans. Microwave
Theory Tech., vol. 39, pp. 480-487, Mar. 1991.
J. A. Stratton, Electromagnetic Theory. New York McGraw-Hill, 1941,
pp. 392–395.
J. Appel-Hansen, “Antenna measurements,” in The Handbook of An-

tenna Design, vol. 1. London: Peregrinus, ch. 8, 1982.
R. F. Harnngton, Time-Harmonic Electromagnetic Fields. New York:
McGraw-Hill, pp. 125–128, 1961.
E. Wolf, “Three-dimensional structure determination of semi-transparent

objects from holographic data,” Optics Cornrrmrz., vol. 1, no. 4, pp.
153-156, Sept./Ott. 1969.
G. T. Ruck, D. E. Barnck, W. D. Starsart, and C. K. Krichbaum, Radar

Cross Section Handbook, New York Plenum Press, 1970.

Ding-Bing Lirr (S’89) was born in Taiwan on May
1, 1962. He graduated from the Nationat Kaohsiung
Institute of Technology, Kaohsiung, Taiwan in 1982,
and received the M.S. degree in 1989 from the
National Taiwan University, Taipei, Taiwan, where
he is now working toward the Ph.D. degree, all in

Electrical Engineering.

His research interests include microwave imaging

systems and antenna measurement tecfmiques.

Tah-Hsiung Chu (M’87) was born in Taiwan on

July 30, 1953. He received the B.S. degree from the
National Taiwan University, Taipei, Taiwan in 1976,

and the M.S. and Ph.D. degrees from the University
of Pennsylvania in 1980 amd 1983 respectively, an
in electrical engineering.

From 1983 to 1986 he was a member of the

technical staff, the Microwave Technology Center,
at RCA David Samoff Research Center, Princeton,

NJ. Since 1986 he has been on the faculty of the
Department of Electrical Engineering at the National

Taiwan University, where he is now Professor of Electrical Engineering.
His research interests include microwave imaging systems and techniques,
microwave circuit and subsystem design, electromagnetic theory, microwave
measurement and calibration techniques, and digital and optical signal pro-
cessing.


