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Bistatic Frequency-Swept Microwave Imaging:
Principle, Methodology and Experimental Results

Ding-Bing Lin, Student Member, IEEE, and Tah-Hsiung Chu, Member, IEEE

Abstract—The basic principle, methodology and experimental
results of frequency-swept microwave imaging of continuous
shape conducting and discrete line objects in a bistatic scattering
arrangement are presented. Theoretical analysis is developed
under the assumptions of plane wave illumination and physical
optics approximation. The measurement system and calibration
procedures are implemented based on the plane wave spectrum
analysis. Images of three different types of scattering objects
reconstructed from the experimental data measured in the fre-
quency range 7.5-12.5 GHz are shown in good agreement with
the scattering object geometries. The results demonstrate that the
developed bistatic frequency-swept microwave imaging system
has potential as a cost-effective tool for the application of remote
sensing, imaging radar, and nondestructive evaluation.

I. INTRODUCTION

T HAS BEEN of long standing interest in inverse scattering

problems to develop analytical method and measurement
system that enable one to use the information in the measured
electromagnetic field to infer the geometrical shape, or the
material characteristics of the unknown scattering object [1].
Microwave imaging is cataloged as an inverse scattering
problem, and finds its application in imaging radar, remote
sensing, nondestructive evaluation, and biological diagnosis
etc., because microwaves can penetrate fog, cloud, and a
variety of dielectric materials.

It is known that the Bojarski’s identity forms the basis of
microwave imaging of a perfectly conducting object in the
far-field backward monostatic scattering arrangement [2], [3].
A microwave imaging system with high image resolution can
be achieved by extending the effective area of the physical
recording aperture using frequency, angular and polarization
diversity techniques. With the use of Bojarski’s identity and
frequency-swept technique, high-resolution microwave image
of conducting objects has been experimentally demonstrated
in [4] and [5]. However, in the monostatic scattering arrange-
ment the scattering object is rotated (i.e., angular diversity
technique) in order to acquire the object scattering information
at different viewing and illumination angles.

This paper studies the frequency-swept microwave imaging
in a bistatic scattering arrangement in which, by using the
plane wave expansion of the scattered field over a linear array,
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the far-field criterion does not meet as that in the Bojarski’s
identity. With the use of linear receiving array and frequency
diversity technique, the images are shown to be reconstructed
from the acquired object scattered field in a cost-effective sense
without the use of planar array or time-consuming angular
diversity technique.

The aim of this paper is to develop and experimentally
demonstrate a cost-effective data acquisition and processing
scheme for use in a bistatic frequency-swept microwave imag-
ing system. This paper begins with the theoretical aspects of
frequency-swept microwave imaging of perfectly conducting
object in the bistatic backward scattering arrangement which
was found to be a cost-effective approach compared with the
multiview, single-frequency forward scattering arrangement
[6]. Analtyical results to be developed in Section II show
that the image can be reconstructed via Fourier inversion
of the acquired Fourier space data under the assumptions of
plane wave illumination and physical optics approximation.

" Note only a two-dimensional bistatic scattering measurement

system is studied in this paper due to the simplicity and
practical consideration of using linear array instead of the
three-dimensional analysis described in [6].

According to the formulation™ of image reconstruction to
be given in Section II, the scattering object is normally
(zero incidence angle) illuminated by a plane wave, and its
scattered field is recorded by a linear receiving array. In
our measurement system, a rectanguiar horn antenna and an
open-ended rectangular waveguide probe mounted on a linear
scanner are used for transmitting and receiving wide-band
signals. The error caused from the imperfect plane wave
illumination is neglected, and the receiving probe response
will be calibrated for the determination of the Fourier space
data of scattering object. However, the mutual coupling effect
in a linear array is not considered in this arrangement.

The methodology on which the calibration procedure to be
developed in Section III is based on the representation of
both the scattered field (or input signal to the receiving probe)
and the measured signal from the probe as a superposition of
plane waves each traveling in different direction with different
amplitudes [7], [8]. A calibration equation is then derived
to relate the measured Fourier space data to the calibrated
Fourier space data. In Section IV the images reconstructed
from the experimental data using the developed calibration
procedures show that the developed frequency-swept bistatic
microwave imaging system is capable of cost-effectively yield-
ing images in good agreement with the scattering object
geometries.
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Fig. 1. Two-dimnensional bistatic scattering geometry.

II. PRINCIPLE

In this section, we will relate the bistatic scattering prop-
erties to the microwave image reconstruction algorithm for
two-dimensional continuous shape conducting and discrete
line objects in the bistatic scattering arrangement as shown
in Fig. 1. In the following derivation the scattering object
is assumed to be infinitely long in the y-direction (normal
to the z-z plane), and is illuminated by a normally incident
TM-polarized plane wave

E'(r)
H'(r) =

—@Eoe—f’“oﬁ‘r, (1)
EZ x E'(r) 2

where ko = w/c is the wave number, Fj is the complex field
amplitude, 7 = \/po/€o is the intrinsic impedance in free
space, and exp (jwt) time dependence is implied.

The scattered field over a linear array in the z-direction
located at z = —d (shown in Fig. 1) for the case of a perfectly
conducting object satisfying the physical optics approximation
is given as

EXz,z = —d, ko)
= —jkgn/ 20(r")
' Cuu
x H'(T")G(|r — 7'|) dr’ 3)

where Cj; is the illuminated object contour, #(r’) is the
outward unit normal vector of C,;; at ', and

1
Gllr =) = 15" (olr = +') )
is the Green’s function in free space.

Similarly, for the case of discrete line scatterers with the

current density induced on the ¢th line scatterer at r; expressed
as

I = o) B el - ), ®

i.e., the line scatterers scatter isotropically with no mutual
coupling and having reflectivity o(r}), the scattered field over
a linear array in the z-direction located at z = —d is given as

~d,ko) =) o(r)E ()G (Ir —7i)).  (6)

7

Ei(z,z =

On assuming the polarization state of receiving array in the
y -direction, the scattered field recorded by the linear array at

z = —d becomes
U(z,2=—d, ko) =9 E*(z,2 = —d, ko). @
Therefore (3) can be expressed as

Us (2,2 = —d, ko)

I
|
.
&
&
—
—
S

where
O.(r") = =2a(r') - 26(C(r)) 9

is defined as the scattering function of the perfectly conducting
object which is related to the object shape, and §(C(r')) is a
one-dimensional Dirac delta function with its argument defined
as

=0 asr’' ¢ Cin

#0 elsewhere (10)

c{r) {
which reduces the surface integral in (8) to the line integral
in (3).

Similarly by defining the scattering function of the discrete
line objects which is related to the distribution of each line
scatterer as

Oulr) =) a(r))s(r —})

i

(11)

where §(r —r}) is a two-dimensional Dirac delta function, the
summation in (6) becomes the surface integral given as

Us(z,2 = —d, ko)
=g -Ej(z,2 = —d, ko)

Note that (12) is similar to (8) except for the scaling factor
outside the integral and the definition of scattering function.
Therefore, for the simplicity and unification of the following
formulation, (12) and (8) can be rewritten as

U(xz_—dkg)—/@//

For the continuous scattering object, x and O(r’) are —jkoEy
and the microwave image defined by the scattering function
given in (9) respectively. For the discrete scattering object, »
and O(r’) are Ey and the microwave image defined by the
scattering function given in (11)

By using the plane wave expansion of the Green’s function
[10]

G(|r —7'|) d*r' (12)

~]koz’l' G(, TII) d2,’_/.

13)

Glr—7]) = 27r/—e—] bri=d==I4ke (== g (14)

where r = & — d2,7' = 2’3 + 72’2, and

_{\/kg—k?c as|kz| < ko
7_ —j D]

— k2 as|ks| > ko, (15
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Fig. 2. Fourier slice acquired in the backward scattering arrangement with
single-frequncy (wavenumber ko) plane wave illumination.

and one-dimensional Fourier transforming the resulting ex-

pression of U*(z,z = —d, ko) in the z-direction, one can
obtain
0* (ks 2 = —d, ko) = "¢~ Ohe, —7 = ko).

(16)
In deriving (16), the one-dimensional Fourier transformation
of U$(z,z = —d, ko) in the z-direction is defined as
U2 (ky,z = —d, ko) = /Us(x,z = —d, ko)e?*=® di,
an

whereas the two-dimensional Fourier transformation of the
scattering function O(r) is defined as

//O(’r‘)eﬂ“'d2

where k = k,& + k.2 is the wave vector in Fourier space.
After applying (15), the arguments of O(k) in (16) are
related by

(18)

24 (k. + ko) =K. (19)
Equations (16) and (19) show that as a two-dimensional
scattering object is illuminated by a normally incident plane
wave, one-dimensional Fourier transforming the scattered field
recorded in the bistatic backward scattering arrangement yields
a semicircular slice centered at QO, —ko) with radius kg in the
two-dimensional Fourier space O(k) of the scattering function
as the semicircle denoted by the solid line shown in Fig. 2.
The dashed line given in Fig. 2 corresponds to the bistatic
forward scattering arrangement, however, it was shown that
this arrangement is not practical using the frequency-swept
technique due to its limited Fourier space [6].

In order to reconstruct the scattering object image with
high resolution, a large portion of Fourier space data can
be acquired by linearly stepping the frequency of incident
plane wave form f; to fo. Both the radius and the center
of semicircular slice shown by (19) will vary from k; and
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Fig. 3. Fourier space data acquired in the backward scattering arrangement
using frequency diversity technique with ko stepped from k; to kg.

(0,—k1) to kp and (0,—kg) accordingly. The semicircle
denoted by the solid line in Fig. 2 then extends to a fan-
shaped section in the Fourier space as shown in Fig. 3. This
is known as the frequency diversity technique. Therefore, the
two-dimensional Fourier inversion of band-pass version of the
limited Fourier space data yields the similar image of either
the shape of illuminated portion of continuous scattering object
or the distribution of discrete scattering objects. The above
theoretical results can be extended to the three-dimensional
case with incident plane wave illuminating in an arbitrary
direction. In the following section, expetimental measurement
system and calibration procedure to acquire the Fourier space
data will be described.

III. MEASUREMENT SYSTEM AND CALIBRATION PROCEDURE

Shown in Fig. 4 is the developed experimental system to
measure the wide-band bistatic scattering data of test object
in a backward scattering arrangement. In the measurement
system, an Arra X820 rectangular horn antenna is used for
transmitting wide-band signals, and an open-ended WR-90
rectangular waveguide mounted on a linear scanner is used as 4
the receiving probe. The linear scanner consists of a stepping
motor for moving the receiving probe along the dashed line
shown in Fig. 4 to synthesize a linear receiving array. The
stepping motor driver is controlled by HP3852A data control
unit. The measurement system also includes Hughes 8010H
traveling wave tube amplifier (TWTA), Avantek AWT-18235
low noise amplifier (LNA), and HP8510B network analyzer.
The measurement system is automated with MicroVax 3500
via an IEEE-488 interface bus to perform instrument control,
data acquisition, and signal processing.

The calibration procedures to be described in the following
for the developed measurement system is based on the plane
wave expansion, in which a monochromatic scalar wave can
be represented as [8]

Ulr. ko) = / Alky, ko)e™ BT dk,, (20)
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Fig. 4. Automated wide-band bistatic scattering measurement system.

i.e., a superposition of plane waves each traveling in different
direction of k = k,Z + k.2 with amplitude A(k,, ko) defined
as the plane wave spectrum (PWS) of U(r, ko). In (20) the
wave vector k satisfies the dispersive relationship

K2+ k2 = k2. Q1)

In the measurement system, the receiving probe is oriented
in the z-direction as the transmitting horn antenna which gives
a normally incident TM-polarized plane wave. By ignoring the
effects due to the imperfect plane wave illumination from horn
antenna and the multiple reflection between the antennas and
test object, according to (16), (17), and (20) the scattered field
at the receiving probe position can be expressed as

Ui (z,2 = —d, ko) = % / Ay (g, i) e~ eaH = (=D g
(22)

where
Ai(ke, ko) = Li(ky, ko) + _z—iﬁ—é(kw’ —v—ko) (23)

is called the PWS of the wave represented by (22), and
I;(ky, ko) is the PWS of an additive isolation error to account
for the residual reflection of the empty room.

Note the wave represented by (22) is not a quantity directly
measurable. By considering the error associated with both
the receiving probe response and the measurement system
frequency response as a filter designated as R{k,,kq) in
the plane wave spectrum domain, the measured wide-band

scattered field over the linear array can then be expressed as
1 ~
U (@2 = ~d, ko) = o~ / Ao kg, ko)~ Feat (N g
™
24

where
Ao(ke, ko) = Io(ks, ko) + Au(ks, ko) R(ke, ko)
= I(kq, ko) + :2{/—’%‘0(%, ~ = ko) R(k., ko)
(25)

is the PWS of the wave represented by (24), jo(k‘m, ko) is the
PWS of the isolation error resulting from the coupling between
transmitting and receiving antennas, and

I(ky, ko) = To(kay ko) + Ii(ka, ko) R(ke, ko). (26)

By one-dimensional Fourier transforming the measured scat-
tered field represented by (24) in z-direction, one can obtain
U2 (ky, 2 = —d, ko) = (ks ko)e ™7 + :23—”e—ﬂd
g

- O(ka, =7 — ko) R(ks, ko) (27)

which establishes a relationship between the calibrated Fourier
space data and the measured Fourier space data. In (27) the first
part is an isolation error term, and it can be directly acquired
by one-dimensional Fourier transforming the signal measured
without locating any scattering object inside the anechoic
chamber. The second part is the product of three terms, the
first term is referred as the range-phase term, the second
term is the desired calibrated values of the two-dimensional
Fourier transformation of the scattering function distributed
on a semicircular slice in the Fourier space, and the third term
is associated with the receiving probe and system frequency
responses.
For a reference scattering object (27) becomes

ﬁrsef(kmz = —d, ko) Zf(kz,ko)e‘”d + ;{Yﬂe‘”d

: Oref(kma -y — kO)R(kwa kO)
(28)
where ﬁfef(km,z = —d, ko) and Omf(kx, —v — kg) are the
measured and calculated Fourier space data of the reference
object used to eliminate the error terms given in (27). There-
fore, from (27) and (28) the calibrated Fourier space data can
be acquired as
U, (kgy 2 = —d, ko) — [(ky, ko)e™ 274
U, ke, z = —d, ko) — I(kg, ko)e—ivd
: Oref(kmy -y = kO) (29)

Summarized as follows are the calibration procedures based
on the calibration equation (29):

O(kwv - = kO) =

1. Measure the wide-band isolation error using linear scan-
ner in the empty room.

2. Positioning the reference object then the test object,
measure the wide-band bistatic scattered fields then
perform one-dimensional Fourier transformation after
subtracting the wide-band isolation error measured in
step (1).

3. Calibrate the Fourier space data of the test object using
(29).
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4, Use linear interpolation to acquire the Fourier space data
in rectangular format for two-dimensional inverse fast
Fourier transformation.

Note in step (3) one-dimensional Fourier transformation

of the isolation error is not required, and it can be directly
subiracted from the measured scattered field data in step (2).

IV. EXPERIMENTAL RESULTS

Based on the above measurement system and calibration
procedures, given in this section are the experimental results of
three different types of scattering object: (a) a metallic cylinder
with length 91 cm and radius ¢ = 15 cm used as a continuous
scattering object, (b) four distributed metallic thin cylinders
with length 113 cm and radius ¢ = 0.5 cm used as discrete line
scatterers, and (¢) a 1 : 100 scale metal covered B-52 model
aircraft used as a complex scattering object, for demonstrating
the performance of the developed frequency-swept bistatic
microwave imaging system.

Before presenting the experimental results the sampling
criteria and resolution of the developed imaging system are
discussed in the following.

To avoid the aliasing effect, the stepping interval of linear
scanner should satisfy

Sz < /\min
2

where Apin is the minimum wavelength (the maximum fre-
quency). Similarly the frequency stepping interval requires

4

< 7
6/ < 2AT max G

where Arp,.x is the maximum size of scattering object. The
image resolution is inversely proportional to the effective area
of Fourjer space data. From Fig. 2, the fan-shaped section
in the Fourier space, the range resolution becomes inversely
proportional to the available bandwidth.

In the measurement, a 153.6-cm-long linear scanning posi-
tioner located at about z = —95 cm with reference to the
center of test object positioner. The linear receiving array
is synthesized by moving an open-ended WR-90 rectangular
waveguide at 128 equally spaced positions. The frequency is
stepped from 7.5 to 12.5 GHz for 51 frequency points. The
reference object used for calibration is a metallic cylinder with
length 113 cm and radius ¢ = 0.5 cm.

In the type (a) test object, the range of ka is 23.6-39.3
radians, hence the measurement is-in physical optics regime.
Shown in Fig. 5(a) is the Fourier space data acquired from
the frequency-swept bistatic microwave imaging system, and
is in good agreement with the simulation result shown in Fig.
5(b). The reconsirucied images from experimental data and
simulation data are shown in Fig. 6(a) and (b). It is shown that
the reconstructed image gives a partial circular ring image cor-
responding to the induced surface current distribution on the
object illuminated region due to specular diffraction observed
by the linear array. Therefore by extending the effective size
of the linear array will not improve the image quality.

(30)
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(b

Fig. 5. (a) Measured and (b) simulated Fourier space data of a metallic

cylinder with radius a = 15 cm;

The experimental results shown in Fig. 5 and 6 are in good
agreement with the simulation results, in which an infinite long
cylinder is illuminated by a plane wave, and the receiving
antenna is treated as an ideal probe. This indicates that the
data acquisition and calibration procedures described in the
Section III' remove the effects including the isolation error,
the range-phase term, the nonideal receiving probe response,
and the system frequency response.

In the type (b) test object, the range of ka is 0.79-1.31
radians, hence the thin cylinders can be treated as four line
scatterers. Results of the Fourier space data and reconstructed
image are shown in Fig. 7(a) and (b). The reconstructed image
is in good agreement with the distribution of four thin cylinders
given in Fig. 7(c).

For the complex object of a B-52 scale aircraft, it consists
of discrete and continuous scattering centers contributed to
the measured bistatic frequency-swept responses. Results of
the Fourier space data and reconstructed image are shown in
Fig. 8(a) and (b). The reconstructed image clearly indicates
those scattering centers on the illuminated surface of test
aircraft observed by the linear array. The image shown is
not symmetrical with respect to the fuselage, because the
assumption of infinite length in the y-direction is inade-
quate.
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-Experiment
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(b)

Fig. 6. Reconstructed images of metallic cylinder with radius ¢ = 15 cm
obtained from (a) measured and (b) simulated Fourjer space data given in
Fig. 5.

V. CONCLUSION

In this study, the frequency-swept microwave imaging of
perfectly conducting objects in the bistatic scattering arrange-
ment has been experimentally demonstrated to be able to
retrieve the shape of continuous scattering object and the
distribution of discrete scattering objects. By using the plane
wave spectrum expansion of the scattered ficld measured from
the receiving probe, the far-field criterion is then unncessary.
Experimental results of three different types of scattering ob-
ject illustrate the principle and methodology of the developed
bistatic frequcncy—swepyt microwave imaging system.

In the analysis, the bistatic frequency-swept microwave
imaging principle is developed under the physical optics
approximation and two-dimensional scattering arrangement. It
is known that the physical optics is inadequate as the dominant
scattering mechanism involves the edge diffraction, multiple
reflection, creeping waves, or traveling waves for a conducting
object of complex shape [11]. Furthermore, study on the
polarization effect in bistatic microwave imaging system is
also important. However the reconstructed image of a three-
dimensional B-52 scale model aircraft using the developed
frequency-swept bistatic microwave imaging system yields the
feature of the scattering complex object and delineates the

1071
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— Z
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10 -5 5

_10 +

©

Fig. 7. (a) Fourier space data and (b) reconstructed image of four thin
cylinders with (c) geometries at {(—12,0) cm, (0, 8) cm, (3.5, —6) cm, and
(10, 5) cm respectively.

correct geometrical relation and relative size. The results show
that the described bistatic frequency-swept microwave imaging
system can be a cost-effective approach in the use of imaging
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(a) Fourier space data and (b) reconstructed image of a 1 : 100 scale
B-52 model aircraft.

Fig. 8.

radar, remote sensing and nondestructive evaluation.
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